Зарегистрироваться...
Блоги
Светлана Неустроева

Светлана Неустроева

Старший преподаватель, Кафедра прикладной математики и информатики
Список блогов
Следующие сообщения →
8691 8351 математика 03.06.09
12:48


Вопросы по математике:

http://www.novsu.ru/doc/study/msv2/?id=92196


6131 задание по теории вероятностей 08.05.09
16:07

Гмурман В.Е. Теория вероятностей и математическая статистика
Глава 14. Система двух случайных величин.
Параграфы: 1 - 8, 10 (без вывода), 11 (без доказательств), 12 - 15, 16 (без док.), 17 (без док.).


8691. 8351 вопросы к экзамену по математике 09.01.09
23:35

Вопросы к экзамену по математике (1 семестр).
1. Определители. Свойства.
2. Матрицы. Виды матриц. Транспонирование матриц. Арифметические действия с матрицами (сложение, вычитание, умножение, умножение на число).
3. Матрицы: миноры матрицы, ранг матрицы, элементарные преобразования матриц, обратная матрица.
4. СЛУ: основные определения. Теорема Кронекера – Капелли. Критерий определённости.
5. Линейная зависимость и линейная независимость объектов.
6. Матричный метод решения СЛУ. Метод Крамера.
7. Метод Гаусса. Решение произвольных СЛУ.
8. Векторы (основные определения: начало, конец вектора, длина; нулевой, единичный векторы, коллинеарные, компланарные векторы; орт вектора и т.д.) Проекция вектора на ось. Теорема о проекции вектора на ось. Действия с векторами (сумма, разность, умножение на число).
9. Координаты вектора. Разложение вектора по ортам. Направляющие косинусы. Длина вектора. Действия с векторами через координаты. Скалярное произведение векторов, свойства.
10. Векторное произведение векторов.
11. Смешанное произведение векторов.
12. n-мерное пространство. Базис пространства.
13. Уравнение прямой с угловым коэффициентом. Общее уравнение. Угол между прямыми. Уравнение прямой, проходящей через точку в данном направлении.
14. Уравнения прямой: через 2 точки, каноническое, в отрезках.
15. Взаимное расположение прямых. Расстояние от точки до прямой.
16. Эллипс.
17. Гипербола.
18. Парабола.
19. Плоскость: общее уравнение, расстояние от точки до плоскости, нормальное уравнение.
20. Плоскость: уравнение через 3 точки, в отрезках. Угол между плоскостями.
21. Прямая в R3: канонические уравнения, через 2 точки, параметрические.
22. Общие уравнения прямой. Угол между прямыми. Угол между прямой и плоскостью.
23. Функция. Способы задания. График функции.
24. Возрастающие и убывающие, чётные и нечётные функции. Обратная, сложная функции. Основные элементарные функции, свойства. Элементарные функции.
25. Последовательности. Способы задания последовательностей. Виды последовательностей. Предел последовательности. Теорема о пределе последовательности.
26. Предел функции. Свойства функций, имеющих предел.
27. Бесконечно малые функции. Свойства.
28. Бесконечно большие функции. Связь бесконечно больших и бесконечно малых функций.
29. Свойства пределов функций.
30. I замечательный предел (вывод).
31. II замечательный предел (вывод).
32. Непрерывность функции. Необходимое и достаточное условие. Свойства функций, непрерывных в точке.
33. Свойства функций на отрезке. Точки разрыва. Непрерывность элементарных функций.
34. Производная функции. Геометрический смысл. Физический смысл. Необходимое условие существования производной. Пример.
35. Правила дифференцирования.
36. Вывод 3-х производных (будут указаны). (Знать выводы всех).
37. Производная сложной, обратной функции, функции. Логарифмическое дифференцирование. Производные высших порядков.
38. Дифференцируемость функции. Необходимое и достаточное условие. Дифференциал функции. Свойства. Применение dy к приближенным вычислениям.
39. Теоремы Ферма, Ролля.
40. Теоремы Коши, Лагранжа. Формула конечных приращений. Правило Лопиталя.


7691, 7351 вопросы к экзамену по математике 26.12.08
18:55

Вопросы к экзамену (3 семестр) 7691, 7351.

1. Числовые ряды, сходимость, сумма. Ряд, образованный членами геометрической прогрессии. Гармонический ряд.
2. Свойства рядов. Остаток ряда. Необходимое условие сходимости рядов.
3. Положительные ряды. Признаки сравнения положительных рядов. Интегральный признак.
4. Положительные ряды. Признаки Даламбера, Коши.
5. Знакопеременные и знакочередующиеся ряды. Абсолютная и условная сходимость. Признак Лейбница.
6. Степенные ряды. Теорема Абеля, следствие. Радиус сходимости.
7. Ряды Тейлора и Маклорена. Разложение в ряд функций ех, sinx, cosx.
8. Дифференцирование и интегрирование степенных рядов. Разложение ln(1+x), arctgx, (1+х)m .
9. Испытания и события, классификация событий, полная группа событий, противоположные события.
10. Элементы комбинаторики.
11. Классическое и статистическое определения вероятности. Геометрическая вероятность, задача о встрече.
12. Сумма событий. Теоремы о вероятностях суммы событий, полной группы, противоположных событий.
13. Зависимые, независимые события. Произведение событий. Теоремы о вероятностях произведения событий.
14. Формула полной вероятности. Формула Байеса.
15. Формула Бернулли. Наивероятнейшее число появления события в n испытаниях.
16. Локальная теорема Лапласа. Кривая вероятностей (график функции ).
17. Формула Пуассона.
18. Интегральная теорема Лапласа. Функция Лапласа. Интегралы Лапласа и Пуассона.
19. Случайные величины, классификация. Д. с. в., закон распределения, многоугольник распределения.
20. Функция распределения вероятностей с. в., свойства.
21. Плотность распределения вероятностей с. в., свойства.
22. Функция от одной случайной величины.
23. Математическое ожидание с. в., связь со средним арифметическим значением, свойства (доказать для д.с.в. и н.с.в.).
24. Отклонение с. в. от математического ожидания, свойство. Дисперсия и среднее квадратическое отклонение. Свойства дисперсии (для д. с. в., н. с. в.).
25. Биноминальное распределение.
26. Распределение Пуассона.
27. Равномерное распределение.
28. Показательное распределение.
29. Нормальное распределение: плотность, числовые характеристики.
30. Нормальная кривая. Влияние на кривую параметров а и σ.
31. Вероятность попадания нормально распределенной с. в. в интервал, вероятность заданного отклонения, правило “3σ ”.
32. Система с. в. Закон распределения системы д. с. в. Законы распределения д. с. в., входящих в систему. Условные законы распределения.
33. Функция распределения системы двух с. в. Свойства.
34. Плотность распределения вероятностей системы двух с. в. Свойства. Числовые характеристики системы случайных величин. Коэффициент корреляции, свойства.
35. Зависимые и независимые с. в. Необходимый и достаточный признак, следствие. Необходимый признак независимости с. в.
36. Функция двух д. с. в. Свойства математического ожидания суммы и произведения.
37. Дисперсия функции с. в. Свойства.
38. Неравенство Чебышева. Закон больших чисел. Теорема Чебышева.
39. Теорема Чебышева. Теорема Бернулли. Теорема Ляпунова.
40. Цели и задачи математической статистики. Генеральная и выборочная совокупности. Повторная, бесповторная; репрезентативная выборки. Статистическое распределение выборки. Полигон и гистограмма.
41. Выборочные характеристики. Доверительный интервал.
42. Элементы теории корреляции.


вопросы к экзамену по математике 5131 08.06.08
19:46

Вопросы к экзамену по математике.

1. Элементы комбинаторики: принцип произведения, выбор с возвращением.
2. Элементы комбинаторики: размещения, перестановки, сочетания.
3. Случайные события, классификация. Сумма и произведение событий.
4. Частота события и её свойства.
5. Вероятность события: статистическое и классическое определение вероятности. Геометрическая вероятность. Задача о встрече или задача Бюффона (по собственному выбору).
6. Теоретико-множественное и аксиоматическое построение теории вероятностей. Аксиомы вероятности, некоторые следствия из аксиом.
7. Теоремы о сумме и произведении событий. Зависимые и независимые события. Условная вероятность.
8. Формула полной вероятности. Формула Байеса.
9. Повторные испытания. Формула Бернулли. Наивероятнейшее число появления события.
10. Локальная теорема Лапласа. Кривая вероятностей. Формула Пуассона.
11. Интегральная теорема Лапласа. Интегралы Лапласа и Пуассона. Функция Лапласа.
12. Дискретные случайные величины, закон распределения. Распределение Бернулли, Пуассона.
13. Непрерывные случайные величины. Функция распределения, плотность вероятности, свойства.
14. Функция одной случайной величины.
15. Числовые характеристики с.в.: характеристики положения.
16. Числовые характеристики с.в.: характеристики рассеяния.
17. Моменты случайной величины.
18. Равномерное распределение. Показательное распределение.
19. Нормальное распределение. Плотность вероятности, кривая Гаусса. Влияние на кривую параметров a и σ.
20. Нормальное распределение: числовые характеристики.
21. Основные формулы и свойства нормального распределения.
22. Система случайных величин. Законы распределения для системы дискретных случайных величин. Функция распределения системы двух с.в., свойства.
23. Плотность распределения вероятностей системы двух с.в., свойства. Плотности вероятности составляющих.
24. Условные законы распределения. Условное математическое ожидание. Нахождение выборочного уравнения регрессии.
25. Зависимые и независимые с. в. Необходимый и достаточный признак, следствие.
26. Корреляционный момент, коэффициент корреляции, свойства. Нахождение выборочного коэффициента корреляции.
27. Функция двух д. с. в. Свойства числовых характеристик функции двух д. с. в.
28. Закон больших чисел.
29. Элементы математической статистики. Генеральная и выборочные совокупности. Статистическое распределение выборки. Полигон и гистограмма.
30. Статистические оценки параметров распределения.


Оставить комментарий
вопросы к экзамену 7691, 7351 08.06.08
19:37

ВНИМАНИЕ гр. 7691, 7351!
Скорее всего экзамен в группе 7691 будет перенесен с 18.06 на 17.06 (консультация соответственно на 16.06). А консультация в группе 7351 перенесется на 17.06, но экзамен останется 19.06. В случае изменения будет доп.сообщения на сайте и старостам групп.

Вопросы к экзамену по математике (2 семестр):

1. Первообразная функции, свойства. Неопределённый интеграл, геометрический смысл, свойства.
2. Основные методы интегрирования (непосредственное, замена переменной, по частям).
3. Простейшие дроби. Интегрирование простейших дробей I, II, III типов.
4. Интегрирование рациональных функций. Разложение правильной дроби на простейшие.
5. Интегрирование тригонометрических функций.
6. Интегрирование иррациональных функций.
7. Определённый интеграл, свойства.
8. Определённый интеграл с переменным верхним пределом. Формула Ньютона-Лейбница. Замена переменной в определённом интеграле. Интегрирование по частям.
9. Задача о площади. Площадь плоской фигуры.
10. Полярные координаты.
11. Площадь криволинейного сектора (с доказательством - самостоятельно).
12. Объём тела вращения (с доказательством - самостоятельно).
13. Несобственные интегралы по бесконечному промежутку. Несобственные интегралы от разрывных функций.
14. Функции нескольких переменных: область определения, график. Случаи n=2, n=3. Линии уровня. Предел и непрерывность функции нескольких переменных (повторить из 1-го семестра), необходимое и достаточное условие непрерывности функции.
15. Частные производные (+ геометрический смысл). Полный дифференциал.
16. Производная по направлению. Градиент, свойство. Частные производные высших порядков.
17. Экстремум функции 2-х переменных. Необходимое условие экстремума (доказательство). Достаточные условия экстремума.
18. Двойной интеграл. Свойства. Правила вычисления.
19. Геометрический смысл и применение двойного интеграла. Двойной интеграл в полярных координатах.
20. ДУ: определение, порядок уравнения, решение (общее, частное). ДУ I порядка (общий вид, геометрический смысл, теорема Коши).
21. ДУ I порядка: с разделяющимися переменными, однородные, линейные, Бернулли.
22. ДУ II порядка, допускающие понижение порядка.
23. ЛОДУ второго порядка, свойства. Определитель Вронского, фундаментальная система решений. Доказать линейную независимость функций: и ; и ; и .
24. Решение ЛОДУ II порядка с постоянными коэффициентами.
25. ЛНДУ II порядка с постоянными коэффициентами. Общее решение ЛНДУ. ЛНДУ II порядка с постоянными коэффициентами со специальной правой частью. Теорема о правой части – сумме различных функций.
26. Метод вариации произвольных постоянных.
27. Задача об охлаждении тела. Найти решение задачи: тело, температура которого 32о С, погружено в термостат, в котором поддерживается постоянная температура 0о С. Зная, что скорость охлаждения тела пропорциональна разности между температурой тела и температурой окружающей среды, определите, за какое время тело охладится до 5о С, если за 20 минут оно охладилось до 15оС.


Допуск к экзамену.
1. Таблица интегралов.
2. Уметь находить частные производные.
3. Уметь решать ЛОДУ II порядка.

Обратите внимание. В вопросе 23 не пропечатались функции. Речь идет о функциях, которые рассматривались на лекции (+ одну пару нужно было рассмотреть самостоятельно). Вопросы также можно взять из рубрики "Персональные документы" на странице www.novsu.ru/person/msv2


Оставить комментарий
И621 Сдаем отчеты по статистике! 20.05.08
18:00

Заканчивается май, а отчетов по статистике практически никто не сдает.
Практика предыдущих лет показывает, что зачет по лабораторным работам происходит далеко не с первого раза.
А там и появляются проблемы с общим зачетом по статистике.
Напоминаю, что должны быть выполнены следующие работы:
методичка "Общая теория статистики" -
Практическая работа 1. Построение статистической группировки.
Практическая работа 2. Расчет средних величин.
Лабораторная работа 2. Расчет средних величин с использованием MS Excel.;
методичка "Статистика. Часть 2" -
Практическая работа 3. Расчёт показателей вариации.
Практическая работа 4. Расчёт показателей дифференциации.
Лабораторная работа 3. Расчёт показателей вариации в MS Excel.

Отчеты сдавать в 611 ауд. (Псковская, 3) любому преподавателю - потом мне передадут.
Лучшее время для сдачи: с 21.05 по 29.05 (но: чем раньше, тем лучше).
Сдавать можно, конечно, и позже, но проверка отчетов будет идти с задержкой.

Внимание! В случае возврата отчета исправленные листы НЕ ЗАМЕНЯТЬ в отчете, А ДОБАВЛЯТЬ к отчету.

Из тех отчетов, что были сданы ранее, получен ЗАЧЕТ по работам:
Афанасьева, Дёмина - ПР1, ПР4, ЛР1, ЛР2.
Дергачева - ПР1.
Зайцева И., Суслина - ПР1, часть ПР2 (выполнены только задания 1-4, а их 7).
Игнатова - ПР1.

Сокращения: ПР - Практическая работа; ЛР - Лабораторная работа.

Получить свои отчеты можно на Псковской по пятницам с 11 до 15 (во время перерывов). Ауд. 611.


7351 7691 27.12.07
07:31

Вопросы к экзамену по математике (1 семестр).
1. Определители. Свойства.
2. Матрицы, виды матриц. Действия с матрицами.
3. Миноры матриц. Ранг матрицы. Обратная матрица.
4. Линейная зависимость и линейная независимость объектов.
5. Системы линейных уравнений (СЛУ): основные определения. Теорема Кронекера – Капелли. Критерий определённости.
6. Методы решения СЛУ.
7. Решение произвольных СЛУ. Собственные значения и собственные векторы матриц. Положительные, ортогональные матрицы.
8. Векторное, смешанное произведение векторов.
9. Линейная зависимость, линейная независимость векторов. Базис пространства.
10. Плоскость: общее уравнение, расстояние от точки до плоскости, нормальное уравнение.
11. Плоскость: через 3 точки, в отрезках. Угол между плоскостями.
12. Прямая в R3: канонические уравнения, через 2 точки, параметрические.
13. Общие уравнения прямой, переход к каноническим. Угол между прямыми. Угол между прямой и плоскостью.
14. Эллипс.
15. Гипербола.
16. Парабола.
17. Введение в анализ. Последовательности, предел последовательности, свойства. Особенности числовых последовательностей.
18. Функция. Способы задания. График функции. Предел функции (по Коши и по Гейне). Односторонние пределы.
19. Предел функции. Свойства функций, имеющих предел.
20. Бесконечно малые функции. Свойства. Бесконечно большие функции.
21. Свойства пределов функций. (будет разбит на несколько вопросов)
22. Сравнение бесконечно малых функций. Основные эквивалентности.
23. I замечательный предел (вывод).
24. II замечательный предел (вывод).
25. Непрерывность функции. Необходимое и достаточное условие. Свойства функций, непрерывных в точке.
26. Свойства функций, непрерывных на отрезке. Точки разрыва. Непрерывность элементарных функций.
27. Производная функции. Геометрический смысл. Физический смысл I и II производной. Необходимое условие существования производной. Пример.
28. Правила дифференцирования.
29. Вывод 3-х производных (будут указаны). (Знать выводы всех).
30. Производная сложной, обратной функции. Логарифмическое дифференцирование.
31. Дифференцируемость функции. Необходимое и достаточное условие. Дифференциал функции. Геометрический смысл dy. Применение dy к приближенным вычислениям.
32. Теоремы Ферма, Ролля, Коши, Лагранжа. Правило Лопиталя. (вопрос может быть разбит на 2 вопроса).
33. Возрастание, убывание функции.
34. Экстремум функции.
35. Выпуклость, вогнутость графика функции. Перегиб.
36. Асимптоты кривой. Схема исследования функции.
37. Основные элементарные функции, свойства.


"Профессор, конечно, лопух, но аппаратура - при нём, при нём..." Обращение к группам 5111, 5112. 23.12.07
22:00

Уважаемые студенты!
Смотрите классику кино и учитесь... на чужих ошибках!
Неужели вы действительно полагаете, что сдавая отчеты, похожие друг на друга как близнецы братья, вы получите положительное заключение о "своих" работах?
Банальное копирование друг с друга отчетов, пусть даже с изменением шрифта или с введением (отменой) нумерации приводит только к трате времени и средств, а также к увеличению числа испачканной бумаги!
Защита в таких случаях будет в январе (время будет определено позже)!
Исправляйтесь! Ещё есть время!


Вопросы к экзамену по математике. 14.06.07
12:22


1. Случайные события, классификация. Сумма и произведение событий.
2. Частота события и её свойства.
3. Вероятность события: статистическое и классическое определение вероятности. Геометрическая вероятность. Задача о встрече или задача Бюффона (по собственному выбору).
4. Теоретико-множественное и аксиоматическое построение теории вероятностей.
5. Теоремы о сумме и произведении событий. Зависимые и независимые события. Условная вероятность.
6. Дискретные случайные величины. Числовые характеристики, свойства.
7. Распределения Бернулли, Пуассона.
8. Непрерывные случайные величины. Функция распределения, плотность вероятности, свойства.
9. Числовые характеристики. Равномерное распределение.
10. Показательное распределение.
11. Нормальное распределение. Плотность вероятности, кривая Гаусса. Влияние на кривую параметров a и σ.
12. Нормальное распределение: числовые характеристики.
13. Формулы нормального распределения.
14. Система случайных величин. Законы распределения для системы дискретных случайных величин. Функция распределения системы двух с.в., свойства.
15. Плотность распределения вероятностей системы двух с.в., свойства. Условные законы распределения.
16. Зависимые и независимые с. в. Необходимый и достаточный признак, следствие. Корреляционный момент, коэффициент корреляции.
17. Функция двух случайных величин. Свойства числовых характеристик функции двух случайных величин.
18. Закон больших чисел.
19. Элементы математической статистики. Генеральная и выборочные совокупности. Способы отбора.
20. Статистическое распределение выборки. Полигон и гистограмма.
21. Выборочные характеристики (точечные и интервальные оценки).
22. Выборочная корреляция.


Следующие сообщения →
Рубрики
Все сообщения